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Lecture 9.  Stability of Dynamic Systems across Lyapunov.  

Lyapunov's theorems on first approximation (the first method of Lyapunov) 

 

 9.1   Stability of Dynamic Systems across Lyapunov 

 

Now, let a dynamic system state be defined as a set of independent coordinates 

     txtxtx n,...,, 21 . The system movement is described as a set of rules 

     txtxtx n02010 ,...,, . This predefined movement is called Undisturbed 

Movement. Application of external disturbances will cause deflection of real behavior 

from the predefined one: 

 

           txtxtxtxtxtx nn 0202101 ...,,,  . 

 

The real behavior is called Disturbed Movement. 

Definition: predefined undisturbed motion of a system is called Stable Motion 

if as a result of application of external forces (which are eliminated after that) the 

system disturbed motion after some period of time move to a region 

 

  .,1;,0)()( 0 niconsttxtx iiiii    

 

Let us now consider stability even more deeply. For the first time strict 

definition of stability was given by Russian scientist A. M. Lyapunov in 1892. 

A little bit mathematics: let a dynamic system be described by a set of 

nonlinear differential equations in Cauchy form: 
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   are nonlinear vector functions of vector argument. 

 

If initial values xi0 are given at   t = t0  the solution can be written as  

 

  nixxxxx
T

nii ,1,,...,, 02010  . 
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Let the system steady state be described by coordinates 

   nixxx
T

ni ,1,,..., 00

1

0  . Define coordinates deflection  nixxx iii ,10   

characterizing the deflection of real behavior from undisturbed steady state behavior. 

Then we can rewrite equations  (3.1) in terms of these deflections: 

                                   nixxxf
dt

xd
ni

i ,1,,...,, 21 


                        (3.2) 

                                                     

 where if  are some nonlinear functions. 

Equations (3.2) are called disturbed motion equations. Initial values of 

deflections  nixi ,1,
0

  are called disturbances. The solution of (3.2) at particular 

 txxxxx nii ,,...,, 02010   is a disturbed motion. 

A.M. Lyapunov in his works gave the following definitions of stability. 

The first definition: Undisturbed motion 0 ix  is called Stable according to 

Lyapunov with respect to variables ix  if at any given positive infinitesimal 0  

there exist positive 0  such that for all 0ix  if 

 

                                                   iix  0                                                       (3.3) 

 then disturbed motion (3.2) for 0tt   satisfies 

 

                                        iix  , ni ,1                                                      (3.4) 

 

Here norm is: 



n

i

ii xx
1

2
. 

The second definition: Undisturbed motion is called Asymptotically Stable 

according to Lyapunov if additional condition 

                                             

                                     nitxi
t

,10)(lim 


                                              (3.5)   

                                                                                   

is satisfied. 

The third definition: Undisturbed motion is called  Unstable  according to 

Lyapunov if there exists moment of time 01 ttt   at which condition (3.4) is not 

satisfied, i.e.  

 nix ii ,1  . 

 

Geometrical interpretation 

 

Figures 3.4 – 3.7 give graphical presentation of notion mentioned above. 



3 
 

 
Fig. 3.2a. Stable motion Fig. 3.2b. Asymptotically Stable motion 

 
 

Fig. 3.2c. Unstable motion  Fig. 3.2d. Stable motion 

 

Physical meaning 

Simply stated, linear system is stable if its response to any finite action is also 

finite, and is unstable if the response is infinite. Stability is essential for normal 

operation of dynamic control systems. 

 

9.2. Stability to first approximation: A.M. Lyapunov theorems 

 

Let ACS be described in state space by differential equations of the form 

 

                                    ni
i xxxF

dt

dx
,...,, 21 .                                                (3.6) 

 

Here  nxxx ,...,, 21  is a deflection vector. 

Motion of the system is (all according to A.M. Lyapunov): 

 Stable if iiii xx   ;
0 ; 

 Asymptotically Stable if 0)(lim 


txi
t

; 

 Unstable if nix ii ,1 . 
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Geometrical interpretation in 3-dimensional coordinate space: motion is stable if at 

disturbances that have not put point  3020100 ,, xxxB  out of sphere of radius   the 

disturbed motion does not move out of sphere of radius  . 

 
 

Fig. 3.3. Stable motion 

 

Now, let a dynamic system be presented as a set of equations (3.1). If nonlinear 

functions  ni xxxF ,...,, 21  in can be rewritten as convergent power series (Taylor 

series) then equations of the form (3.6) after such transformation become 

 

 nininii
i xxRxaxaxa
dt

dx
,...,... 12211  , 

 

where  ni xxR ...,,1  are functions not containing terms of order lower than 2. If 

deflections are small enough we can neglect iR  thus obtaining linearized equations, 

which are called first approximation equations: 

 

                          nin22i11i
i xa...xaxa
dt

dx
 , ni ,1                               (3.7) 

 

or equivalently in matrix form AXX  . Why not BUAXX  ? It is obvious: since 

we are dealing with stability U(t)  0. 

Characteristic equation in this case is 

 

                                            0 IAdet  ,                                                        (3.8) 

 

where   are proper numbers of matrix A (roots of characteristic equation): 
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For stability analysis two theorems have fundamental importance. 
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THE THEOREM  1.   If real parts of all roots  nii ,1  of characteristic equation 

(3.8) are negative then undisturbed motion 0 ix  is Asymptotically Stable, i.e. if 

niAi ,10)(Re      then      0)(lim 


txi
t

. 

THE THEOREM  2.   If among all roots i  of characteristic equation (3.8) there is 

at least one root with positive real part then undisturbed motion is Unstable, i.e. if 

0)(Re Ak  then  0)(Re Ai   (k ≠ i) despite the fact that nix ii ,1
0

   . 

Important note: if among all roots there are several (possibly one) zeroes, and 

all other roots have negative real parts then such case is called critical; the system is 

called neutrally stable. In critical case stability of undisturbed motion cannot be 

evaluated by first approximation (3.7). 

So, according to Lyapunov theorems we can state the following:  

1) A linear system movement is stable and this stability is asymptotical if all 

the roots of characteristic equation are negative, i.e. niAi ,10)(Re  . 

2) A linear system movement is unstable if among all roots in its characteristic 

equation there is at least one root with positive real part, i.e.  

.0)(Re;1,10)(Re  AniA ki   

3) A linear system movement is called neutrally stable if among the roots of its 

characteristic equation there is one zero root and the rest of roots have negative real 

parts:  0)(Re;1,10)(Re  AniA ki  , ki  . 

 

These theorems are very important since they allow to judge about nonlinear 

system stability analyzing fairly simple linearized equations and not to mess with 

complicated nonlinear equations. These theorems form the first stability analysis 

method of Lyapunov. 

 

 9.3   Finding proper numbers and eigenvectors of a matrix 

 

Let us consider a given matrix A and some vector V  that satisfies an equation: 

VАV  . 

Here scalar variable λ is called proper number of A, and V is called eigenvector 

(or, equally, proper vector) of matrix A. 

Let us solve the task of finding a proper number and eigenvector. After 

transposing all terms to the left-hand side and factoring out V  we will obtain: 

                                0)(  VIА  .                                                                                 (3.9)  
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Here 0 denotes a zero vector, i.e. 

n
0

...

0

0

0
2

1

 . 

For equation (3.9) to have solution it is necessary that the determinant  

of (A – λI) to be equal to zero: 

                                                             0)(  IAdet   .                                     (3.10)  

Solving (3.10) for λ we obtain polynomial equation of the form: 
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This equation is called characteristic equation of the matrix A; ai are 

characteristic polynomial coefficients. Roots λ1, λ2, …, λn   of equation (3.10) are 

proper numbers of the matrix A. 

After all this theory the time for a good example has come.  

 

An example 1. Let mathematical description of a dynamic system to be given as  

BUAXX  , where 
57

31
A ; U(t)=0.   

The task is to find proper numbers of matrix A. 

Algorithm and Solution 

1)  Write a characteristic equation of the system 

0)(  IAdet  . 

2) We will define own numbers of the given matrix A: 
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Conclusion: according to the theorem the 2nd movement of the researched 

system is unstable as λ2>0. 

Geometrical interpretation (fig. 3.4): 
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Fig. 3.4. Unstable motion 

Vectors  Vi  corresponding to  λi  are eigenvectors of  A, they are determined by 

the  equation                        

0)( 
ii
VIА   

or equally                      niAVV
iii

,1 .                                                                 (3.11) 

If a particular matrix A has “n” different proper numbers, then its 

corresponding “n” proper vectors are linearly independent. Since the matrix (A - λiI)  

in equation (3.11) has rank not more than  (n-1) each of  Vi  is determined accurate to 

arbitrary multiplier ni ,1 . 
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